LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **CHEMISTRY**

FIRST SEMESTER - APRIL 2023

UMT 1302 - MATHEMATICS FOR CHEMISTRY

Date: 08-05-2023	Dept. No.	Max.: 100 Marks
Time: 09:00 AM - 12:00 I	NOON l	

	SECTION A	***************************************	
Answe	er ALL the Questions		
1.	Answer the following (5 x 1	= 5 m	arks)
a)	Define maximum & minimum value of a function of two variables.	K1	CO1
b)	Write the expansion of $(1+x)^n$	K1	CO1
c)	Define even and odd function.	K1	CO1
d)	State De Movier's theorem.	K1	CO1
e)	Define correlation.	K1	CO1
2.	Choose the correct answer for the following (5 x 1	= 5 m	arks)
a) b)	If $rt - s^2 = 0$ at a critical point (a, b) , then it is A. Maximum point B. Minimum point C. Neither maximum nor minimum D. None of these $\frac{e^x - e^{-x}}{2} = \frac{e^x - e^{-x}}{2} = \frac{e^x - e^{-x}}{2}$	K1	CO1
<i>5)</i>	$ \frac{1}{2} = \frac{1}{2} $ A. $1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots \dots \infty$ B. $1 - \frac{x}{1!} + \frac{x^2}{2!} + \cdots \dots \infty$ C. $1 + \frac{x^2}{2!} + \frac{x^4}{4!} \dots \infty$ D. $x + \frac{x^3}{3!} + \frac{x^5}{5!} \dots \infty$	K1	CO1
c)	$\int_{1}^{2} x^{2} dx =$ $A. \frac{8}{3} \qquad B. \frac{7}{3} \qquad C. \frac{5}{3} \qquad D. \frac{4}{3}$	K1	CO1
d)	$\sin n\theta =$ $\mathbf{A}.n\cos^{n-1}\theta\sin\theta - \frac{n(n-1)(n-2)}{3!}\cos^{n-3}\theta\sin^{3}\theta + \dots$ $\mathbf{B}.n\cos^{n-1}\theta\sin\theta + \frac{n(n-1)(n-2)}{3!}\cos^{n-3}\theta\sin^{3}\theta - \dots$ $\mathbf{C}.n\cos^{n-1}\theta\sin\theta - \frac{n(n+1)(n+2)}{3!}\cos^{n-3}\theta\sin^{3}\theta + \dots$ $\mathbf{D}. \text{ None of these}$	K1	CO1
e)	The regression coefficient of Y on X is given by $\mathbf{A} \cdot r \frac{\sigma_x}{\sigma_y} \qquad \mathbf{B} \cdot r \frac{\sigma_y}{\sigma_x} \qquad \mathbf{C} \cdot r^2 \frac{\sigma_x}{\sigma_y} \qquad \mathbf{D} \cdot r^2 \frac{\sigma_y}{\sigma_x}$	K1	CO1
3.	Fill in the blanks (5 x 1 =	= 5 ma	rks)
a)	The formula for finding the angle Ø between the tangent and the radius vector is	K2	CO1

b)	The expansion of $\frac{e^x + e^{-x}}{2} =$													
c)	If $f(x)$ is an even function of x , then $\int_{-a}^{a} f(x) dx =$													
d)	The expansion of $\cos n\theta$ is													
e)	Spearman 's formula for t	he rank con	rrelation o	coefficier	nt is				K2	CO1				
4.	Say TRUE or FALSE						(5	x 1 =	= 5 marks)					
a)	The formula for finding the polar subnormal is $\frac{dr}{d\theta}$.													
b)	The number of terms in the expansion of $(x + a)^n$ is $n + 1$.													
c)	$\int_{a}^{b} f(x)dx = \int_{b}^{a} f(x)dx$;							K2	CO1				
d)	The value of $\frac{1+i}{1-i}$ is 1.								K2	CO1				
e)	Correlation coefficient alv	ways lies be	etween -1	and +1.					K2	CO1				
SECTION B														
Answer any TWO of the following (2 x 10 = 20 Marks)														
5	Compute the angle of inte		tween the	e curves 2	$x^2 = 4y$	and $y^2 =$	•	-	K3	CO2				
6	Find the sum to infinity of the series $1 + \frac{3}{4} + \frac{3}{4} \cdot \frac{5}{8} + \frac{3}{4} \cdot \frac{5}{8} \cdot \frac{7}{12} + \cdots$									CO2				
7	Compute $\int \frac{3x-1}{(x-1)^2(x+3)} dx$.									CO2				
8	Express $\frac{\sin 6\theta}{\sin \theta}$ in terms of $\cos \theta$.									CO2				
		SECTI	ON C											
Answe	r any TWO of the following	ng					(2x 1	10 = 1	20 Ma	ırks)				
9	Determine the sum of the	series to in	finity usi	ng binon	nial series	expansi	on							
	$\frac{15}{16} + \frac{15.21}{16.24} + \frac{15.21.27}{16.24.32} + \cdots$								K4	CO3				
10	Evaluate $I = \int_0^{\pi/2} \frac{(\sin x)^{3/2}}{(\sin x)^{3/2} + (\cos x)^{3/2}} dx$								K4	CO3				
11	Determine the value of the $ \frac{1+\sin\frac{\pi}{8}+i\cos\frac{\pi}{8}}{1+\sin\frac{\pi}{0}-i\cos\frac{\pi}{0}} \right]^{8}. $													
12	Calculate the mean and st		8 ⁻	the follo	wing tak	le giving	the age		K4	CO3				
12	distribution of 542 memb			the follo	wing tao	ic giving	the age		K4	CO3				
	Age (in years) 20-30		40-50	50-60	60-70	70-80	80-90							
	No of Members 3	61 SECT	132 TON D	153	140	51	2							
			IOND											
ļ	wer any ONE of the following (1 x 20								g					
13 (a)	Determine the maximum and minimum value of the function $f(x,y) = 4x^2 + 6xy + 9y^2 - 8x - 24y + 4.$							10	K5	CO4				
(b)	Determine sum to infinity of the series $1 + \frac{1+3}{2!} + \frac{1+3+3^2}{3!} + \frac{1+3+3^2+3^3}{4!} + \frac{10}{4!}$								K5	CO4				
	2! 3! 4!to ∞.													
14.(a)	Evaluate $\int \frac{2x+3}{x^2+x+1} dx$ 10								K5	CO4				
	Expand $sin^6\theta$ and arrange in in a series of cosines of multiples of θ . 10 K5 CC													
(b)	Expand $sin^6\theta$ and arrang	ge in in a se	ries of co	sines of 1	nultiples	of θ .		10	K5	CO4				

				SE	CTIC)N E								
Answei	r any ONE of tl	ne fol	lowi	ng								(1 x 20	= 20 N	Iarks)
15 (a)	Reorganise a	10	K6	CO5										
(b)	By integrating prove that $\int_0^{\pi/4} \log(1 + \tan \theta) d\theta = \frac{\pi}{8} \log 2$.												K6	CO5
16.(a)	By expanding $cos^7\theta$ justify that $2^6cos^7\theta = cos 7\theta + 7cos 5\theta + 21cos 3\theta + 35cos \theta.$											10	K6	CO5
(b)	Ten competitors in a musical test where ranked by three judges A,B and C in the following order.											10	K6	CO5
	Rank by A	1	6	5	10	3	2	4	9	7	8			
	Rank by B	3	5	8	4	7	10	2	1	6	9			
	Rank by C	6	4	9	8	1	2	3	10	5	7			
	Using rank correlation method, discuss which pair of judges has the nearest approach to common likings in music?													

\$\$\$\$\$\$\$